Origins of the Atom

The structure of the atom as we know it has been developed over hundreds of years with a number of scientists building on the current knowledge of the time. The concept of the atom was first hypothesised by two Greek philosophers, ___________ and his mentor Leucippus in the fifth century BC. They imagined that atoms were the smallest ___________ structure known to man, unable to be broken into smaller pieces. However, at the time their theory had little support.

These scholars suggested that atoms varied in shape depending on the type of atom. For example, iron atoms had ___________ which locked them together, which helped to explain iron’s solid state at room temperature. Water atoms, by contrast, were liquid a room temperature because they were ________________ and slippery and could be poured.

Dalton’s Solid Sphere Model of the Atom

Atoms were thought of this way for centuries until the English chemist John Dalton challenged the theory in 1803. Dalton was responsible for developing one of the earliest scientific models of the atom. He hypothesized that atoms were small, hard ___________ that were indivisible and that atoms of a particular element were identical. The latter part of the theory is still considered to be correct, with the exception of ________________ which vary in the number of neutrons they possess. Neutrons would be discovered over a century later. Dalton also theorized about how atoms combine to make ___________ and was the first scientist to attribute ___________ to each of the known elements.

Dalton’s theories were somewhat limited in that they still didn’t explain much about the nature of atoms themselves, or their appearance.

Thomson’s Plum Pudding Model of the Atom

The next major breakthrough in atomic structure came in 1897 when J.J Thomson discovered the ________________, which he referred to as ‘corpuscles’. This discovery proved that atoms were not as indivisible as was previously thought, introducing us to the idea of ________________ particles.
Models of the Atom

Thomson carried out experiments using ______________ rays produced in a discharge tube. He observed that the rays were attracted by ______________ charged metal plates but were ______________ by negatively charged ones. This led Thomson to the conclusion that the rays were negatively charged, based on the fact that opposite charges ______________ and like charges repel.

By measuring the charges of the particles in the rays, Thomson also deduced that these particles were two thousand times lighter than a ______________ atom and that by changing the type of metal used on the cathode, these particles were present in many different types of atoms.

The findings led to Thomson’s “plum pudding model” in 1904. In this model, the atom consists of ______________ electrons that float in a sphere of positive charge, in a similar way that plums are scattered in a pudding or raisins are dotted throughout a fruit cake. Although this model saw Thomson awarded the Nobel Prize for his work in this field in 1906, it still provided no understanding of the arrangement of the electrons in the atom.

Rutherford’s Nuclear Model of the Atom

In 1911, Thomson’s student Ernest Rutherford carried out an experiment which would directly challenge the current structure of the atom. Using his previous work on the chemistry of ______________ substances, Rutherford devised an experiment to further investigate atomic structure, in the hopes of confirming Thomson’s atomic theory.

Rutherford fired positively charged ___________ particles at a thin sheet of gold foil which, according to Thomson’s model, should have been able to pass through the gold foil without being ______________. However, Rutherford instead observed something unexpected. Many of the alpha particles did, in fact, pass through the foil; however, some were deflected at very large ______________ as though they had bounced off something in their path.
Models of the Atom Guided Notes – Student Edition

This observation led Rutherford to suggest that the atom was similar to a tiny solar system, consisting of a dense, positively charged core called a ___________ which was orbited by lighter, negatively charged electrons in a ___________ motion. Rutherford’s model is sometimes referred to as the nuclear model of the atom and was one of the first to suggest that the atom consisted mostly of ___________ space.

While Rutherford’s discovery of the nucleus prompted a rethink of the structure of the atom and was a definite improvement on Thomson’s model, it didn’t explain what kept the electrons in orbit instead of spiralling into the nucleus. His model also could not explain why atoms only emit light at certain ___________ or frequencies.

Bohr’s Planetary Model of the Atom

Following on from Rutherford’s work, the Danish physicist Niels Bohr used ___________ theory in an attempt to explain the arrangement of the electrons. He proposed that electrons could only orbit
Models of the Atom

the nucleus in certain __________ and were found at different energy levels around the nucleus. This model is sometimes referred to as the electron __________ model, retaining the concept of a __________ from Rutherford’s model, but changing the motion of the electrons. Bohr’s model introduced the idea that there were __________ of the atom of which there was a greater probability of finding electrons. The regions with a higher probability were associated with the specific energy levels possessed by the __________ and displayed a variety of unusual __________ (known as shells). Bohr also suggested that the electrons were able to move between energy levels by either absorbing or emitting energy in the form of __________.

Erwin Schrödinger’s Quantum Model of the Atom

In 1926 Erwin Schrödinger proposed that, rather than the electrons moving in fixed orbits or __________, the electrons behaved more like __________ in the same way that light can. Using mathematical equations, Schrödinger developed a model for the __________ of electrons in an atom. This model consisted of the nucleus surrounded by dense clouds or regions of electrons, which are referred to as orbitals. This is the accepted model of today.

James Chadwick

James Chadwick’s work followed on from the prediction made by Rutherford in 1920 that another kind of particle must be present in the nucleus along with the proton. This prediction was based on the idea that if there were only positively charged protons in the __________, then it should break apart due to the __________ forces between the like-charged protons. Therefore, in order to ensure that that the atom remained electrically __________ (i.e. had the same number of negative and positive __________); a neutral particle would also have to be present. This led to the discovery and measurement of the mass of the __________ by Chadwick in 1932, completing the picture of the subatomic particles which makes up the atom.

Since then scientists have discovered that the protons and neutrons that make up the nucleus are themselves divisible into particles called __________.